A Flexible Coordinate Descent Method for Big Data Applications

نویسندگان

  • Kimon Fountoulakis
  • Rachael Tappenden
چکیده

In this paper we present a novel randomized block coordinate descent method for the minimization of a convex composite objective function. The method uses (approximate) partial second-order (curvature) information, so that the algorithm performance is more robust when applied to highly nonseparable or ill conditioned problems. We call the method Flexible Coordinate Descent (FCD). At each iteration of FCD, a block of coordinates is sampled randomly, a quadratic model is formed about that block and the model is minimized approximately/inexactly to determine the search direction. An inexpensive line search is then employed to ensure a monotonic decrease in the objective function and acceptance of large step sizes. We present several high probability iteration complexity results to show that convergence of FCD is guaranteed theoretically. Finally, we present numerical results on large-scale problems to demonstrate the practical performance of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Coordinate Descent Method for Learning with Big Data

In this paper we develop and analyze Hydra: HYbriD cooRdinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes ...

متن کامل

Stochastic Parallel Block Coordinate Descent for Large-Scale Saddle Point Problems

We consider convex-concave saddle point problems with a separable structure and non-strongly convex functions. We propose an efficient stochastic block coordinate descent method using adaptive primal-dual updates, which enables flexible parallel optimization for large-scale problems. Our method shares the efficiency and flexibility of block coordinate descent methods with the simplicity of prim...

متن کامل

Parallelizing Big Data Machine Learning Applications with Model Rotation

This paper proposes model rotation as a general approach to parallelize big data machine learning applications. To solve the big model problem in parallelization, we distribute the model parameters to inter-node workers and rotate different model parts in a ring topology. The advantage of model rotation comes from maximizing the effect of parallel model updates for algorithm convergence while m...

متن کامل

Coordinate Descent with Coupled Constraints

Introduction For many big data applications, a relatively small parameter vector θ ∈ Rn is determined to fit a model to a very large dataset with N observations. We consider a different motivating problem in which both n and N are large. Thus, both batch optimization techniques and many stochastic techniques that require working with the entire θ vector (e.g. mirror descent methods) are too ine...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015